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ABSTRACT 

Programming-by-Example (PBE) enables users to create 

programs without writing a line of code. However, there is 

little research on people's ability to accomplish complex tasks 

by providing examples, which is the key to successful PBE 

solutions. This paper presents an online user study, which 

reports observations on how well people decompose complex 

tasks, and disambiguate sub-tasks. Our findings suggest that 

disambiguation and decomposition are difficult for 

inexperienced users. We identify seven types of mistakes 

made, and suggest new opportunities for actionable feedback 

based on unsuccessful examples, with design implications for 

future PBE systems.    
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INTRODUCTION 
The goal of programming by example (PBE) is to enable 

ordinary people to automate complex and repetitive tasks, 

and it has even made its way into commercial products such 

as Microsoft Excel’s FlashFill [2]. However, guiding 

inexperienced users on how to provide high-quality examples 

is still an open-ended research question. To create high-

quality examples, users need to consider two requirements: 

(1) disambiguation, and (2) decomposition. First, users 

must be able to provide diverse cases to disambiguate the 

operation they want to create from other operations the PBE 

engine could infer. Second, to create operations for complex 

tasks, users need to decompose those tasks into small sub-

tasks that the PBE engine can (more easily) infer. Both 

disambiguation and problem decomposition are challenging 

computational thinking skills and are often part of required 

training for computer science and engineering students.  

For this paper, we conducted an online user study with 

participants recruited from Amazon Mechanical Turk (AMT) 

who were asked to complete 6 tutorials and 5 main tasks 

using our PBE system. Our research focuses on examining 

the behavior of ordinary people providing input and output 

examples, managing steps and cases for decomposition and 

disambiguation, and making and fixing mistakes. To provide 

recommendations for PBE tool designers, we also designed 

two feedback mechanisms, and compared their impact on the 

main task success rate. A total of 161 users participated in the 

study, and 30 of them successfully completed all five main 

tasks.   

Our findings suggest that disambiguation and decomposition 

are difficult for even highly-motivated AMT workers, and for 

those that had practiced all required subtasks during the 

tutorials. We report seven types of mistakes identified from 

unsuccessful trials. We also determined that that those 

unsuccessful trials contain meaningful information about 

users’ intent and misunderstandings about PBE. Under the 

actionable feedback condition, participants received context-

aware suggestions based on the information from 

unsuccessful trials, and outperformed other participants. 
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RELATED WORK 

There exists a large body of research on PBE systems, as 

summarized in [1,8]. User studies on PBE systems reveal 

usability issues and challenges, summarized by Lau [7] and 

Gulwani [4]. A typical PBE system generates multiple 

operations that are consistent with the examples provided by 

the user. To resolve the ambiguity, researchers have proposed 

a few interaction models. For example, Wrangler [6] lets 

users choose an operation among top candidates, FlashProg 

[9] also makes suggestions to users to provide specific 

examples for resolving ambiguity. A few PBE systems [6,11] 

support decomposition by allowing users to  create multiple 

operations one-by-one. However, users of such systems are 

often frustrated at not knowing what the possible primitive 

operations are [3,11], progress of the current state towards 

the solution, or intermediate steps to reach the solution [5]. 

Supporting users in decomposing complex tasks into small 

subtasks and incrementally composing solutions is still an 

open-ended research question.  

METHODS 

We conducted an online user study that began with a brief 

introduction to PBE. Then six tutorials on the user interface 

and basic PBE tasks (Table 1) were given. After finishing the 

tutorials, participants were asked to complete five main tasks, 

that are advanced variations of the tutorials. Finally, the tasks 

were followed by a demographic survey. The study took 

around 26 minutes (M = 25.97, STD = 11.54), and 

participants who finished the entire study were paid $3.00. 

The study was posted on Amazon Mechanical Turk for two 

days, during which 161 workers started the first tutorial, 137 

workers finished the tutorials and proceeded to the tasks, but 

only 30 finished the entire study. Summary demographics of 

the 30 participants who finished the entire study indicate the 

majority age range was 25-34 (60%, M = 36.43, STD = 7.56), 

male (60%), with bachelor (50%) or high school degrees 

(37%). The majority (84%) of participants reported that they 

had no programming knowledge (57%) or only basic 

concepts (27%). However, many of them had various IT 

experience, such as using spreadsheets (70%), creating web 

pages using HTML (30%) or content-management systems 

(20%), database (23%), and scripting languages such as 

Python or Ruby (20%).  

Experimental System  

We developed an experimental PBE system that allows non-

technical participants to quickly learn and perform 

decomposition and disambiguation as illustrated in Figure 1. 

The system can generate simple programs for standard PBE 

tasks (e.g. arithmetic, text processing, filtering). In the 

system’s UI, table rows represent sequential steps from input 

to output, and table columns represent independent cases. 

Participants can type examples values in table cells, insert 

steps by pressing “+” buttons between rows, and add cases 

by pressing the “Add Case” button. Pressing “Teach 

Computer” runs the PBE inference engine, to generate 

operations that calculate each step. When the engine fails to 

determine operations from the provided examples, feedback 

messages are shown to the right rows. If participants spent at 

least three minutes, and tried (unsuccessfully) to “Teach 

Computer” at least eight times for a given task, a button was 

shown to allow them to give up and move on to the next task. 

Through internal pilot tests, we decided on a reasonable, high 

number of minutes and trials to give people the chance to try 

a number of answers in order to study example-providing. 

1. Initial state of the task UI that contains default Input and Output values (1 
and 4), buttons for adding case (“Add Case”), adding step (“+”), and 
inferring operations from current examples (“Teach Computer”).   

 
2. As the user clicks the “Teach Computer” button, the UI shows feedback 
messages for every step and the entire program.  

 
3a. As the user clicks “Add Case”, an empty column is added to the right of 
the table in which he/she types an example (2 and 6).  

 

3b. Alternatively, the user could click [+] between two rows, and an extra 
step would be inserted between the rows.     

 

4. By adding a case and a step, the user makes every step find a single 
operation, and teaches the correct operation.  

 

Figure 1. The study UI and basic walkthrough  



We designed two types of feedback (simple and actionable) 

to see whether actionable feedback effects user’s behavior. 

The simple feedback provides only the number of programs 

that the system generated. We designed the simple feedback 

as the baseline condition, since most existing PBE systems 

[2,6,9,11] provide a similar level of feedback for generated 

programs. In contrast, the actionable feedback detects user’s 

intentions from the examples, and explains details why it 

failed to generate any program and how to resolve the issue. 

To our knowledge, no prior PBE systems provide actionable 

feedback.  

 

 

 

 

 

 

When the PBE system finds a single operation for the step, 

both types of feedback show the same message, "Found a 

single program that calculates the step."  

When the system finds multiple operations, the simple 

feedback is "Found N programs that calculate this step", 

where N is the number of generated operations. The 

actionable feedback is same, but adds "Provide more 

examples." to the end.  

When the system finds no operation for the step, the simple 

feedback is "Found no program that calculates this step." In 

contrast, the actionable feedback includes the following 

messages:  

 If there is an empty cell in the current row, the actionable 

feedback is, "There is an empty case. Did you miss filling 

it?"    

 If the current row contains values of multiple types (e.g. 

number and string), the actionable feedback is, "There are 

number and string examples in this case. This might have 

caused the computer to fail in finding a program."  

 If there is any row above the current row that contains all 

the values of the current row, the actionable feedback is, 

"If you are trying to filter values from steps above, you 

need an additional step containing T or F." 

 If the current row is a substring of a filtered subset of any 

row above, the actionable feedback is, "Are you trying to 

filter and extract part of string at the same time? If that's 

the case, you have to do them in two steps." 

SUCCESS RATE 

As mentioned, 30 of the 161 participants finished the entire 

study. They successfully finished most tutorials (average 

success rate = 91.1%, # trials = 3.22) as shown in Table 2. 

The main tasks were successfully completed less often than 

the tutorials (success rate = 66.7%, # trials = 10.12) To 

understand the effect of feedback on successful task 

completion, we conducted a non-parametric repeated 

measure ANOVA test [10]. The result yielded an F ratio of 

F(1, 150) = 26.01, p < .001, indicating that the success rate 

was significantly greater with the actionable feedback than 

with the baseline feedback. We also conducted factorial 

ANOVA to check the effect of demographic factors on 

success rate, but found no significant impact (p > .03). 

  

Description Default examples Solution examples 

T
u
to

rials 

T1,

2 

Input + 1 IN 1 

OUT 2 
 

IN 1 5 

OUT 2 6 
 

T3 (Input + 1) * 2 IN 1 

OUT 4 
 

IN 1 2 

STEP 2 3 

OUT 4 6 
 

T4 Get the sum of all 

numbers 

IN 1,1 

OUT 2 
 

IN 1,1 
3,

2 

OUT 2 5 
 

T5 Get length of a text 

value (including 

spaces). 

IN yes 

OUT 3 
 

IN yes no 

OUT 3 2 
 

T6 Find numbers that are 

greater than 9 

IN 11,8,9,10 

OUT 11,10 
 

IN 11,8,9,10 

STEP T,F,F,T 

OUT 11,10 
 

M
ain

 task
s 

T7 (Input + 1) * (Input – 1) IN 1 

OUT 0 
 

IN 1 2 3 

STEP 2 3 4 

STEP 0 1 2 

OUT 0 3 8 
 

T8 Sort numbers in 

ascending order 

IN 1,-1 

OUT -1,1 
 

IN 1,-1 5,2,3 

OUT -1,1 2,3,5 
 

T9 Find words that are 

longer than two letters 

IN be, are, I, some 

OUT are, some 
 

IN be, are, I, some 

STEP 2,3,1,4 

STEP F,T,F,T 

OUT are, some 
 

T10 Find numbers that are 

not divisible by 4 

without remainder 

IN 1,4,5 

OUT 1,5 
 

IN 1,4,5 2,4 

STEP T,F,T F,T 

OUT 1,5 4 
 

T11 Extract prices of cars 

that are manufactured in 

2014 or later. 
IN 

Civic(2014)-

$12000, 

Elantra(2012)-

$9500, 

Corolla(2015)-

$14000, 

Corolla(2013)-

$10000 

OUT 12000,14000 

 

 

IN 

Civic(2014)-$12000, 

Elantra(2012)-$9500, 

Corolla(2015)-$14000, 

Corolla(2013)-$10000 

STEP 2014, 2012, 2015, 2013 

STEP 
12000, 9500, 14000, 

10000 

STEP T, F, T, F 

OUT 12000,14000 
 

Table 1. With the given description and default examples for 

each task, participants were asked to add more examples, 

such as the solution examples shown.    



Types of Mistakes 

We counted mistakes as participant errors in user-provided 

examples that prevent the PBE engine from generating a 

single program for each step. The first author reviewed 150 

task results (5 main tasks done by 30 participants), and 

identified 246 mistakes. 25.6% of the mistakes were critical, 

meaning that they remained until participants gave up the 

task. We grouped mistakes into the categories below.   

Missing steps (found 92 times; 30 were critical)   

The PBE engine failed to generate programs when 

participants did not provide crucial steps as illustrated below: 

(a) missing steps of key values above predicates (35 times; 

15 critical), (b) missing steps of predicates values above a list 

filtering step (31 times; 7 critical), (c) subtasks of a 

combination of filtering and text extraction (22 times; 15 

critical), and multi-step arithmetic (T3 and T7; 4 times) as 

illustrated below.  

(a) IN be, are, I, some 

ST1 F,T,F,T 

OUT are, some 
 

For T9, A predicate step (ST1) needs 

a step of key values (“2,3,1,4”) 

above. 

 

(b) IN 1,4,5 

OUT 1,5 
 

For T10, filtered result (OUT) 

requires a step containing predicate 

values (“T” for including, “F” for 

excluding values).  

 

(c) 
IN 

Civic(2014)-$12000, 

Elantra(2012)-$9500, 

Corolla(2015)-$14000, 

Corolla(2013)-$10000 

STEP 2014, 2012, 2015, 2013 

STEP T, F, T, F 

OUT 12000,14000 
 

For T11, the output (“12000, 

14000”) is a substring of the filtered 

list. It requires either a substring of 

the original list or the filtered list 

above. 

 

Ambiguous cases (29 times; 11 critical)   

Participants often could not provide sufficient examples for 

the engine to find the right program. For example, 

participants stuck with single-case examples (18 times; 8 

critical). (a) To generate a “not divisible by 4” condition for 

T10, the input requires “2”, but eight participants had to try 

multiple times, and three of them gave up. (b) Similarly, T8 

(sorting numbers) requires an additional case containing at 

least three numbers, whose output is not the input in reverse-

order. 

(a) IN 1,4,5 2,4 

STEP T,F,T F,T 

OUT 1,5 4 
 

For T10, to disambiguate “divisible 

by 4” from “divisible by 2”, IN 

requires a value “2”. 

(b) IN 1,-1 5,2,1 

OUT -1,1 1,2,5 
 

For T8, examples for sorting must 

contain three numbers that are not in 

reverse order.  

Inconsistent or unsupported values (28 times; 8 critical)   

Participants provided a variety of values that the PBE engine 

could not find a matching program, such as inconsistent 

values for arithmetic tasks (9 times; 2 critical), incorrect 

predicates for filtering (5 times; 1 critical), and incorrectly 

sorted list (2 times). Participants also provided steps with 

single Boolean values, when the correct program requires 

multiple values (7 times; 3 critical). Participants often made 

formatting mistakes such as (a) Boolean values next to 

numbers (e.g. "T11, T10, F8, F9": 2 times), Boolean values 

without a separator (e.g. "FTFT"; 3 times) and using "Yes" 

and "No" instead of "T" and "F" (1 time).  

(a) IN 11,8,9,10 

STEP T11, T10,F8, F9 

OUT 11,10 
 

“T11” probably means that the value 

“11” is marked with “T”  

 

Unnecessary steps (15 times; 5 critical)   

Participants often added unnecessary steps. For example, (a) 

they often provided steps of unnecessary Boolean values for 

filtering tasks (7 times; 2 critical), numbers for arithmetic (4 

times; 2 critical), or completely empty steps (2 times; 1 

critical). For T10, (b) two participants provided a step that 

contains "4", which is the operand of the number-predicate 

program they need (2 times).  

(a) IN 11,8,9,10 

STEP T,F,F,T 

STEP T,T 

OUT 11,10 
 

The third row (“T,T”) is 

unnecessary.    

 

(b) IN 1,4,5 3,8,15 

STEP 4 4 

STEP F F 

OUT 1,5 3,15 
 

To express a conditional “not 

divisible by 4”, a participant created 

steps of “4” and “F”. 

Describing with formula (11 times; 7 critical)   

Five participants described steps with formulas instead of 

example values. For instance, (a) they provided "Input+1", 

"*2", "(2)*(0)", and "+1" for arithmetic tasks (3 times; 3 

critical). For the filtering tasks, they tried (b) "<2014", "1/4", 

"1<2<3<4", "-1<1", "are>2", and "some>2" (6 times; 3 

critical). For the sorting tasks, two participants tried to 

describe the direction with "increasing order" and "reverse 

input" (2 times; 1 critical).   

 

 

  Success rate  Average # Trials (per participant) 

Task Base. Exp. 𝜒2  

p-value 

Base. Exp. Mann Whitney 

U-test 

T
u
to

rials 

T1 1.00 1.00 >.5 1.67 1.07 p > .5 

T2 0.93 1.00 >.5 3.00 1.20 Z = 0.91, p < .30 

T3 0.80 0.87 >.5 6.80 3.47 Z = 2.13, p < .30 

T4 1.00 1.00 >.5 3.40 1.87 Z = 0.76, p < .30 

T5 1.00 1.00 >.5 1.20 1.07 p > .5 

T6 0.67 0.67 >.5 7.40 6.47 p > .5 

M
ain

 task
s 

T7 0.53 0.87 <.05  10.33 3.13 Z = 2.32, p < .01  

T8 0.67 1.00 <.03 8.73 2.73 Z = 5.56, p < .3 

T9 0.27 0.93 <.001 18.27 5.27 Z = 2.90, p < .001 

T10 0.53 0.93 <.03 13.00 4.13 Z = 1.60, p < .05  

T11 0.27 0.67 <.03 28.73 6.87 Z = 3.17, p < .001 

Table 2. Success rates (proportion of participants who passed 

the task) and average numbers of trials for the baseline (Base.) 

and the experimental (Exp.) conditions. Highlighted cells are 

significant (p<.05).  



(a) IN 1 

STEP Input+1 

STEP *2 

OUT 4 
 

(b) IN be, are, I, some 

STEP T 

STEP are>2 

STEP some>2 

OUT are, some 
 

Inconsistent program (3 times; 2 critical)   

Even when the PBE engine generated a single program for 

every step, the entire program could be inconsistent with the 

task. For instance, participants often created wrong arithmetic 

(2 times; 2 critical), or filtering programs (1 time). 

Empty cases (2 times; 0 critical)   

Participants sometimes left the right most case empty. 

DISCUSSION AND FUTURE WORK 

The paper presents an overview of common mistakes that 

non-expert users make in providing examples for PBE 

systems. The experiment confirms that we can automatically 

detect a user’s programming intent, and generate actionable 

feedback that helps the user quickly fix mistakes. We made 

several simplifying assumptions that limit the scope of our 

findings. First, to allow non-expert users to quickly learn, the 

study introduces only a few standard tasks (e.g. arithmetic, 

string processing, and filtering). While the general patterns of 

findings will likely apply to other tasks, it will be important 

to confirm the extent to which this is true. Second, our 

experimental system does not show generated programs, 

while a few PBE systems [6,9] support interactive 

disambiguation where users read program descriptions and 

disambiguate by directly choosing a desired program. Further 

work is needed to explore the opportunity and effectiveness 

of interactive disambiguation.  

The study also leads us to a wide research area. For example, 

how to construct and train a knowledge model of a PBE user 

is an open-ended research question. How various design 

factors effect a user’s motivation and understanding of the 

PBE system is another research topic for future work.    
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